DOE Advanced TidGen® 2.0

D3.3 - Final Subsystem Design and Development Plan

DE-EE0007820

April 30, 2018

The following presentation meets deliverable D3.3, for the Advanced TidGen®, which fulfills milestone M3.1 for the project:

Award No.:	DE-EE0007820, effective 11/1/2016
Project Title:	Advanced TidGen® Power System
Prime Recipient:	ORPC Maine
Principal Investigator:	Jarlath McEntee, P.E.

Milestone M3.1 (Q5): Mooring system and anchor design completed, with models demonstrating achievement of performance criteria, including stability during installation, operations and retrieval, mitigation strategies covering critical risks such as wave loading, debris, and cable loading and dynamics.

Major Deliverable(s):

- D3.1: Technical report on deployment and mooring system design requirements and subsystem risk analysis (Q3)
- **D3.2:** Technical report on mooring system design, supporting analytical models, and subsystem FMEA (Milestone M3.1) (Q4)
- **D3.3:** Presentation on all technical work performed, the final subsystem design, supporting analytical models, risk analysis and development plan (Q5)

Agenda D3.3 - Final System Design

- 1. Project Overview
- 2. System Overview (Task 7)
- 3. Turbine Design (Tasks 1 & 2)
- 4. Chassis and Buoyancy Assembly (Task 3)
- 5. Mooring System (Task 3)
- 6. Deployment and Retrieval System (Task 3)
- 7. Driveline (Task 3)
- 8. Electrical and Control System (Task 4)

TidGen[®] 2.0 CDR - Continuation Application

Project Overview

Project Overview Review of Project Goals

- Integrate technologies: high availability PTO generator and driveline, adaptive non-linear controls, BTMS
- Optimize turbine efficiency with current CFD advances
- Composite design optimization and life tests
- Rigorous production qualification and verification tests
- Innovative environmental monitoring, collaboration with Adaptive Management Team
- 2 month verification deployment in Cobscook Bay
- 12 month validation deployment in Western Passage
- DNV GL certification

Project Overview Schedule, Budget & Milestones

Milestones / Achievements Status

- Critical Design Review (CDR) completed, with refined system architecture, cost estimates and performance predictions.
- CDR design and costs meet project LCOE target (<\$0.80/kWh); Cp 44.1% for 29% improvement
- Deliverables:
 - D2.2 Composite characterization test report not submitted, testing ongoing with static testing completed
 - D3.2 Technical report on mooring system design submitted
- NCTE: BP1 ends 6/30 with continuation app by end of March; BP2 extends subsystem testing to Q2 2020

Advanced TidGen® Project Timeline

TidGen® 2.0 Power System Baseline - Critical Design Review (CDR)

TidGen[®] 2.0 Device Specifications & Technologies

- Dimensions (approx.): 8.8m X 34.6m X 8.2m
- Rated Output at generator terminals: 260kW at 2.25m/s, 500kW at 3.0m/s
- High performing design with C_P 0.441
- System dry weight: 160,000kg (No anchors)
- Buoyant anchor weight:
 - 172,000kg per anchor (X2) Western Passage
 - Primary drivers are turbine drag loads and low coefficient of friction
 - BP2 subsystem testing to begin with turbine barge testing for accurate load assessment, followed by design refinement and anchor evaluation to reduce overdesign, and deployment system to reduce operational risks

TidGen[®] 2.0 CDR - Continuation Application

System Overview

2

System Overview

- Overall Length: 34.6m (112ft)
- Overall Height: 8.2m (27ft)
- Overall Width: 6.4m (21ft)
- Device Dry Weight: 140,000kg (310,000lb)

Turbine Size:

• 2.2m x 6.25m (7.2ft x 20.5ft)

Mooring System Dry Weight:

• 963,000kg (2,120,000lbs)

Western Passage Anchor Weight:

- 246,000kg (x2) (buoyant weight)
- 463,000kg (x2) (dry weight)

Advanced TidGen® Device

Jan. 2017

Jun. 2017

Sep. 2017

Turbine Diameter	- 2.2m
Number of Foils	- 3
Solidity	- 0.13
TSR, max power	- 2
TSR, freewheeling	- 3.5
At 2.25 m/s: RPM, peak power RPM, freewheel	- 39 RPM - 61 RPM
System weight	- 160,000kg
System dimensions	- 34.6x8.2x8.8m
Anchor weight	- 172,000kg
Anchor dimension- 17	.2x7.5x1.5m

RivGen® 1.F

TidGen® 1.0

TidGen® 2.0

	RivGen® 1.F	TidGen® 1.0	TidGen® 2.0
Turbine Clearance	44mm	1147mm	260mm
Turbine Solidity	0.174	0.142	0.130
RPM, max pwr, 2.25 m/s	57.3	30.7	39.1
RPM, Freewheel	100.3	53.7	60.8

TidGen 2.0 Field Testing

- Barge tow testing, Q4 2018
 - 1 month testing in Cobscook Bay
 - Verify first turbine system production as part of composites development
 - Verify driveline design
 - Tow test for accurate performance and loading to refine design models and reduce overdesign in structure, weight
 - Planning in process

TidGen 2.0 Field Testing

- Anchor evaluation, Q2 2019
 - 1 month testing in Western Passage
 - Scale model anchor to assess seabed conditions and anchor efficiency towards final full-scale design
 - Reviewing existing geophysical surveys of Western Passage

TidGen 2.0 Field Testing

- Deployment subsystem, Q3-Q4 2019
 - 1 month testing in Cobscook Bay
 - Address critical assembly for modularity and alignment
 - Assess launch operations
 - Finalize external equipment requirements for deployment rig

TidGen[®] 2.0 CDR - Continuation Application

Turbine Design - Tasks 1 & 2

Overview:

• Hydrodynamic Turbine Analysis

- 2D CFD LExCoSS
- 3D CFD

• Structural Turbine Design

- Turbine Design Overview CDR
- Composite Testing Program
 - MSU Coupon testing

Hydrodynamic Turbine Loads

Cp estimates:

2D estimate - 40.0% 2D LExCoSS post processed

3D estimate - 48.1% Single 3D turbine with counter rotating est. improvement of 33.7%

3D CFD - OpenFOAM

Ongoing efforts with 3D CFD

Purpose:

- Get more accurate performance data
- Understand axial loads
- Calculate end effects

Analysis Overview Design Standards Used

DNVGL-ST-0164 - Section 6 Load and Resistance Factors

DNVGL-ST-0164 - Section 7.8.2.4 Simplified Calculation Method

ASTM D3039 - Tensile Testing of Composites

ASTM D3410 - Compression Testing of Composites

DNVGL-OS-C101 - Design of Offshore Steel Structures (Welding)

Standards to be used in budget period 2 DNVGL-ST-0164 - Section 7.8.2.2 Composite Qualification DNVGL-OS-C501 - Composite Components

Analysis Overview - Tangential Load

Tangential pressure as line load applied to the leading edge.

Analysis Overview - Normal (Radial) Load

- Radial Pressure load over 3 chordwise elements (0.0225m chordwise each) approximately at the 1/4 cord,
- Applied pressure PR=PR(z) * 0.3/(3*0.0225) = PR(z)*(4.44) as the multiplier,
- Negative pressure is radially inward it is applied as a pressure to the outer surface $PR(z)^*(-4.44)$ to get inward force.

Analysis Overview - Axial Load

Maximum foil axial load is taken as 10% of the maximum single foil normal load of 150,000N, yielding 15,000N, applied as a line load on the foil leading edge.

Critical Results: Analysis #1

X-Direction strain - underside view

Critical Results: Analysis #1

Subsystem Overview Dimensions

Subsystem Cost

Estimated fabrication cost:

\$55,000 - \$75,000 per turbine

First build: Qty = 1

Production build: Qty = 7

TidGen® 2.0 requires 8 turbines:

\$440,000 - \$600,000 per system

TidGen[®] 2.0 CDR - Continuation Application

Chassis, Buoyancy and Structural Assembly - Task 3

Subsystem Overview

Subsystem Components

Critical Changes Since PDR:

- Increased reliance on BP for "assisted" rigidity
- Separation of driveline stanchions and BP connection frames
- Removal of "strap-on" buoyancy
- Reduced "height"
- Increased width for stiffness
- Raised mooring connection frame to center of drag
- Increased mooring connection frame span to mitigate chain interference

Subsystem Overview

Subsystem Components

Subsystem Overview

Dimensions - A-TD20-10071 & A-TD20-10072 (MAIN PIPE SECTIONS)

Subsystem Interface Details Specifications

BP interface (14 pinned connections)

Subsystem Assembly Strategy

Critical Results: Structural Assembly

von Mises (N/m^2)

2.000e+009 1.833e+008 1.667e+008 1.500e+008 1.333e+008 1.167e+008 1.000€+008 8.333e+007

EXAMPLE: ULS 5.2-15deg

Model name:structural assembly extended pontoon V4b Study name:ULS 5-2 15deg - betterMesh(-Default-) Plot type: Static nodal stress Stress1 Deformation scale: 53.2063 1.44

6.667e+007 5.000e+007 3.333e+007 1.667e+007 8.954e+002 Model name:structural assembly extended pontoon V4b Study name:ULS 5-2 15deg - betterMesh(-Default-) Plot type: Static displacement Displacement1 Deformation scale: \$3,2063 URES (mm)

adial kN]		Туре	Resultant	X-Component	Y-Component		Connector
208	14.82681	Shear Force (N)	2.08E+05	0	-2.01E+05	-53178	Pin Connector-2
61	-6.90057	Shear Force (N)	60825	0	-60385	7308	Pin Connector-4
14	-3.34841	Shear Force (N)	13529	0	13506	-790.2	Pin Connector-5
45	14.97138	Shear Force (N)	44791	0	43270	11571	Pin Connector-7
5	-82.8909	Shear Force (N)	4821.1	0	-596.65	4784	Pin Connector-9
244	-5.42633	Shear Force (N)	2.44E+05	0	2.43E+05	-23063	Pin Connector-10
28	1.20E+04	Shear Force (N)	27852	-11971	25148	0	Pin Connector-18
40	1.70E+04	Shear Force (N)	39671	17049	-35820	0	Pin Connector-22
28	1.20E+04	Shear Force (N)	27852	11971	-25148	0	Pin Connector-24
40	1.70E+04	Shear Force (N)	39671	-17049	35820	0	Pin Connector-26
389	-36.0684	Shear Force (N)	3.89E+05	0	3.15E+05	-2.29E+05	Pin Connector-6
142	35.93933	Shear Force (N)	1.42E+05	0	1.15E+05	83323	Pin Connector-8

Analysis Overview Outer Support Connection

DNV Padeye Analysis

(side connection*):

- Assumptions:
 - Fmax = 35kN (max radial pin force from ULS FEA 11/28/17)
 - POU Type: A
 - Risk: high
 - Class: R30
 - 1 Shear Face for Pin
- Geometric Results:
 - Dpin = 35mm
 - Dhole = 37.1mm
 - Tplate = 19.05mm
 - Rplate = 70mm
 - CheekPlates = none
- Results:
 - Pin RSF (shear) = 1.04
 - Bearing Pressure: RSF = 35.31
 - Tear Out RSF = 1.11
 - Cheek Plate Weld RSF = N/A

Bolted Flange

Assumptions:

- F_{Ytot} = 290 kN (SW React laod)
- M_{tot} = 74 Nm (SW React)
- D_{boltCircle} = 325mm
- D_{bolt} = 12. 5mm
- T_{flange} = 19.1mm
- N_{bolt} = 8
- F_{bolt} = 23 kN (assumes separating force evenly distributed but single bolt takes moment load)

<u>Results</u>:

- (from Shigley's bolt eqs):
- F_{preload} = 12kN
- $RSF_{bolt} = 5.4$
- RSF_{pull-thru} = 28

FEA under ULS loading

Fatigue Analysis (DNV-RP-C203)

Tubular Joint Fillet Weld • Type: F	Con. Plate Joint Fillet Weld • Type: F	$σ_{max FLS}$ = 163MPa → Δ $σ_{max FLS}$ << 163MPa	
• T_max=9.5mm	• T_max=12.5mm	(max at flange joint = 92MPa)	
• K=0.25	• K=0.25		
• $\Delta \sigma_{max} = 205 \text{MPa}$	• $\Delta \sigma_{max} = 191 \text{MPa}$		
Tube Surface	Flange Plate Joint	Flange Bolt Plate	
• Type: B1	• Type: F	• Type: C1	
 T_max=9.5mm 	• T_max= 19.1 mm	• T_max= 19.1 mm	
• K=0	• K=0.25	• K=0.15	
• $\Delta \sigma_{max} = 388 \text{MPa}$	• $\Delta \sigma_{max} = 162$ MPa	• $\Delta \sigma_{max} = 248$ MPa	

*for BP connection see 270 Buoyancy Pod Design Overview

Critical Results: Analysis #1

Fatigue Calculations

FEA Study Overview

Component	Allowable Stress	Max Stress	Max Deflection
Flex Plate	218MPa (MF=1.15)	125.7E+6N/m^2	1.5mm
End Stanchion Frame	340MPa (MF=1.15)	220.8E+6N/m^2	1.58mm

Critical Results: Pressure Vessel (main shell)

Design Guide: DNV-RP-C202 - Buckling Strength of Shells Primary Buckling Modes: Shell Buckling & Panel Ring Buckling

- Loads (inc. LF):
 - P_{ext} = 525.5kPa
 - M_{max} = 781kPa*
- Geometry:
 - Shell: D = 66in, t = 9.5mm, L = 16m
 - HS: 250x90x9 Unequal angle, L = 8m (7-9m OK)
 - S: 140mm x 14.288mm, L = 1.33m (up to 1.433m OK)
- Material:
 - Fy = 250MPa
 - γ_m = 1.15
- Results:
 - Design buckling Strength: 4.68x10⁷ Pa
 - Combined Shell Stress: 4.25x10⁷ Pa
 - Ring Stiff (Panel) Buckling Check: Pass
 - Heavy Ring Stiffener (Panel) Buckling Check: Pass
 - External Pressure Check: Pass

*bending moment est. comes from assumption of buoyancy pod as a simply supported overhanging beam under uniform (buoyancy + drag) load. Restraining supports are considered to be mooring connections. Additional chassis connections are not considered but should reduce overall bending moments

Critical Results: Fairing Shell

Plate Buckling

- Loads (inc. LF):
 - $P_{ext} = 8.5 kPa$

• Geometry:

- Plate thickness: 8.0mm,
- L = 14.1m (longest segment)
- Stiffeners = 0.4m apart, 6mm thickness, 75mm height
- RSF lateral loaded plate: 1.8
- Stiffener Checks: OK

FLS Results

FEA RESULTS vs. Allowable

Loc	Туре	σ _{max} [Pa]	σ _{min} [Pa]	∆σ [MPa]	∆o _{allowed} [MPa]
1	F	5.68E+07	-1.47E+07	71.5	192.6
2	F	5.32E+07	-5.00E+06	58.9	192.6
3	B2	8.90E+07	-1.61E+07	105.1	293.2
4	C1	1.19E+08	-2.31E+07	142.1	275.9

Corrosion Protection

Corrosion protection strategy

Primary Source: DNVGL-RP-B401 Cathodic Protection Design

Central Chassis

- Assumptions:
 - No CP needed on interior of chassis tubes
 - Surface Area: 648m² (including fairing plates)
 - Depth: >30m
 - Coating:
 - Type: III
 - Life: 20yrs
 - Anodes:
 - Type: Al
 - Geometry: long-slender, flush-mounted
 - Life: 5yrs
- Results:
 - Anode Mass: 160kg
 - Cost Est: \$1,140 (every 5yrs not including labor)
- Note:
 - Anode Mass ~doubles for Coat type II)
 - 10x Anode Mass for uncoated

Buoyancy Pod

- Assumptions:
 - No CP needed on interior of BP tubes
 - Surface Area: 1263m² (including fairing plates)
 - Depth: >30m
 - Coating:
 - Type: III
 - Life: 20yrs
 - Anodes:
 - Type: Al
 - Geometry: long-slender, flush-mounted
 - Life: 5yrs
- <u>Results:</u>
 - Anode Mass: 306kg
 - Cost Est: \$2,300 (every 5yrs not including labor)
- Note:
 - Anode Mass doubles (651kg for Coat type II)
 - 10x Anode Mass (3,255kg for uncoated)

Subsystem Cost

Estimated fabrication cost

Central Chassis

- Estimated CAPEX Cost: \$330,000
 - Assumes \$4.00/lb as average steel fabrication
 - Includes \$40k in coating & initial anode cost
- Estimated OPEX Cost: \$1,250/yr
 - Assumes 5yr inspection and CP anode replacement

Buoyancy Pod

- Estimated CAPEX Cost: \$560,000
 - Assumes \$4.00/lb as average steel fabrication
 - Includes \$50k in coating and initial anode cost
 - Need to work with fabricator final cost estimate
- Estimated OPEX Cost: \$1,250/yr
 - Assumes 5yr inspection and CP anode replacement

Total structural assembly:

- CDR estimate: \$890,000
- PDR estimate: \$960,000

TidGen[®] 2.0 CDR - Continuation Application

Mooring System - Task 3

TidGen[®] Moorings

Project Overview

Cobscook Bay

- Mooring system and anchors rated for 2.25m/s
- Drag and lift values for turbines taken from LExCoSS and no additional correction
- Deployment and subsystem testing used to verify CFD results for Western Passage deployment.

Western Passage

- Mooring system and anchors rated for 3.5m/s
- Drag and lift values for turbines taken as measured values from subsystem testing and from CB deployment.
- Anchors and moorings are inexpensive compared to heavy lift operations required if using CFD at face value.

Mooring Assembly High Level Overview

Cobscook Bay

Case	Description
Static	Freewheel, 2.25m/s
Failure 1	Primary mooring line snap
Failure 2	Fore bridle line snap
Failure 3	Aft bridle line snap
Fatigue	Static with oscillations

Western Passage

The bridle segment has been converted into a 3m spring component with a response 6 and target load of 600kN, remainder of the bridle line is chain.

The figure demonstrates the difference between the chain case and spring case when bridle line 1 fails.

Critical Results: Fatigue Analysis

- Using both simulated and estimated cycle counts, significant overdesign of mooring lines
- Resulting from oversize for ALS shock loads

	Western	Passage	Cobscook		
	Lifetime Annual		Lifetime	Annual	
	(years) Damage		(years)	Damage	
Primary Mooring Line	43	2.306e-2	120	8.308e-3	
Redundant Line	28,773	3.476e-5	254,851,221	3.924e-9	
Bridle Line	219	4.569e-3	1,122	8.914e-4	

Analysis Overview Critical Results: Line Clashing

- Adding a rigid spreader bar, connected from each redundant line to the primary line, to ensure that there is always space between the lines
- Increasing the separation distance between the anchor connection points of the redundant lines and the primary line

Possible that aft line touches down on anchor

Subsystem Overview Anchor Design

Dry Weight: 463 ton Buoyant Weight: 246 ton

Anchor Weight	2,400kN
Length	17.2m
Width	7.5m
Height	1.5m

Subsystem Cost

Estimated fabrication cost

Bridle Lines			1		1	
Item #	Manufacturer/Supplier	Product	Units	Unit Cost	Qty	Cost
	Anchor Marine Houston	2-3/4" Gr3 Studlink Chain	90-ft shot	\$5,750.00	1	\$5,750.00
	Anchor Marine Houston	2-1/2" Sea Link shackle	1	\$600.00	16	\$9,600.00
Western Pass	sage Deployment Site		1			
	Anchor Marine Houston	2-3/4" Gr3 Studlink Chain	90-ft shot	\$5,750.00	6	\$34,500.00
	Anchor Marine Houston	2-1/2" Sea Link shackle	1	\$600.00	24	\$14,400.00
Bridle Load C	ell	_				
	Load Cell Central	Tension Link	1	\$5,750.00	4	\$23,000.00
	Anchor Marine Houston	2-1/2" Sea Link shackle	1	\$600.00	4	\$2,400.00
Rigid Bridle						
		Bridle	1	\$42,000.00	2	\$84,000.00
Anchor						
		Anchor	1	\$150,000.00	2	\$300,000.00
					Total	\$473,650.00

Risk Assessment & Mitigation

General Consequences and Control

- Moderate Failure
- Devices moves out of flow
- Redundant line capacity
 reduced
- Device orientation impairs
 performance

- Severe Failure
- P&D Cable damaged or destroyed
- Device not operable due to out of useable flow
- Device moves off subsea cliff
- Device interferes with regular ship traffic

Controls:

- Double and triple redundancy to prevent device loss and facilitating recovery
- Full-scale turbine performance testing

Risk Assessment & Mitigation

- Detection:
- Abnormal mooring line loads
- Abnormal device position and orientation

• Causes:

- Low estimate of friction
- Anchor undersized due to low estimate of turbine drag

Controls:

- Anchor holding tests and DNV friction guidelines
- Full-scale turbine performance testing

Risk Assessment & Mitigation

Mooring Line Failure

- Detection:
- Abnormal mooring line loads
- Abnormal device position and orientation
- Causes:
- Shackle Abrasion
- Chain corrosion
- Chain abrasion due to redundant line touchdown

Controls:

- Upsize chain for corrosion allowance & regular visual inspection
- Additional shackles to add more degrees of freedom than OcGen
- Secure redundant line to primary to prevent touchdown

Validation Testing

BP2 Test Plan - Anchor Capacity

- 3+ One ton anchors
- Deployed in Western Passage project site
- Measure line tension and angle, determine holding capacity
- Investigate anchor features to increase lateral holding capacity

TidGen[®] 2.0 CDR - Continuation Application

Deployment and Retrieval System (Task 3)

Subsystem Overview

Functional Description & Performance

Able to lift, transport, and lower a full TidGen power system with accurate positional station keeping during minimal flow periods.

Device will be used in all deployment, maintenance, and decommission activities.

Subsystem Overview

Subsystem Components

*** Additional equipment / subsystems

- Hydraulic / electric power unit
- Tow/Push positioning equipment/vessels
- Power / data cable equipment
- On-water safety equipment

Specifications & Requirements

Load Description

Full capacity winches

• Full system weight distributed to 4 lifting lines

Specifications & Requirements Specifications

Requirement	Value
Deployment vessel (without the TidGen® device)	3
towing sea state	
Deployment barge minimum interior width	10m
Deployment barge minimum length	30m
	dual-hull (catamaran) (can lift TidGen® device between
Deployment vessel hull concept	hulls)
Barge design working load	600T
Deck Ancillary Power Capacity	2kW 110VAC Power
Deployment barge lift capacity	> 5000kN (includes 1.25/0.9 Load factors)
	4 (2 per anchor)
	Barge includes mounts / interfaces for winches and winch
Number of lift points	motors
Maximum system Sea State for deployment	2
Deployed anchor positional accuracy	+/-5m
Deployed Mooring system orientation accuracy	+/- 5deg
Minimum winch speed	= 1m/min
System with full TidGen® device tow speed	= 2knts

Subsystem Installation Strategy

Build / stage anchors near shore

- Each anchor will weigh ~200 tons
- Staging site will need to be 30 m deep at low tide.

Assembly, Installation, & Maintenance Subsystem Installation Strategy

Bring device into water

• Use airbag roller to bring device down shore ramp into water / tidal area

Subsystem Installation Strategy

Bring device into water

• Connect float bags to bottom of device

Subsystem Installation Strategy

Bring device into water

• Continue to lower device into water

Subsystem Installation Strategy

Bring device into water

• Move device into water intil floating

Subsystem Installation Strategy

Reorient Device

• Slowly deflate air bags allowing the device to move from the assembly position to the deployed position (with the buoyancy pod at the top of the device)

Subsystem Installation Strategy

Connect to the Deployment System

- Position deployment barge around device and attach winches
- Move device to pre-staged anchors

Subsystem Installation Strategy

Attach device to anchors

- This will be done at low tide
- Mooring line connections will be made at surface.
- Anchor lifting line connections can be made at surface or at anchors.

Subsystem Installation Strategy

Lift anchors with tide

- Lift lines will be locked off.
- Buoyancy of device and barge will lift anchors.

Subsystem Installation Strategy

Move to deployment site

- Can use tidal flow to help with transport.
- Want to arrive at site at slack tide.

Assembly, Installation, & Maintenance

Subsystem Installation Strategy

Lower device

• Chain jacks / winches will feed out chain.

Assembly, Installation, & Maintenance

Subsystem Installation Strategy

Detach and leave device

 Anchor lines will either detach from anchors at depth or at surface and then lowered to the seafloor with tag retrieval lines.

Validation Testing

BP2 Test Plan - Deployment

- Single turbine or RivGen® 2.0 with BTMS
- Review detachable system process, provided ROV development progresses.
- Replicate OcGen with Rigid bridle and 2 point mooring improvement

TidGen[®] 2.0 CDR - Continuation Application

Driveline - Task 3

2

Driveline Overview

Functional Description & Performance

Overall Design

- Performance: >5 year life with <5% power loss.
- Driveline sections consist of two turbine pairs 4 total.
- Overall system design concept mirrors the "PTO Driveline Test System":
 - Mid-bearing assembly constrains turbines radially and axially
 - End-bearing constrains radially and allows for axial movement and does not over-constrain.
- Turbines rows are interconnected by flexible couplings to allow for axial and radial misalignment.
- Complex loading, system flexure, combined with high-cycle count; make driveline design difficult conservative design necessary for 20 yr life.

Driveline Overview

History

PCD Bearings Housings engineered to keep bearing contact orthogonal to shaft mid line

Driveline Overview *History*

- Large loads/span lead to significant deflection in cross flow turbines.
- Bearing housings designed to be rigid to transfer loads and selectively weakened to match angular deflection in shaft.

Specifications & Requirements Load Description

Driveline design is driven by fatigue. Driveline fatigue loads are highest when operating at torque limited power production mode with additional system deflection (FLS #2- Torque Limited Power Production).

Current design loads are summarized in: D-TD20-10053 - Driveline bending Moments

Key inputs to this document are derived from:

•D-TD20-10022 RU - TidGen 2.0 Driveline Design Loads v2 •Deflection of Structural Assembly FEA Runs 2017_11_10 •D-TD20-10035 - TidGen 2.0 Off-Axis Flow and Axial Load

Driveline Overview

Present Design

- Mid-Bearing Stanchion extended to reduce bending loads on center stanchion and driveline tube.
- Turbines cantilevered over bearing housing.
- Can handle asymmetric loadings

Turbine Pair Interface Details Specifications

Turbine to Turbine Connection

Standard ETP and Zero Max coupling used.

Space is limited.

•45 kNm torque rating

•180mm Turbine Shaft

•Angular deflection and misalignment within limits.

Brake Interface Details Specifications

Turbine to Brake Connection

Standard ETP and Zero Max coupling used with custom interface.

Brake design is ongoing.

- •45 kNm torque rating
- •180mm Turbine Shaft
- •180mm Brake Shaft

•Angular deflection and misalignment within limits.

Subsystem Interface Details

Specifications

Bearing Housing Connections Bolted interfaces that are pre-leveled with alignment features.

Final design effort to finalize interface (number of bolts, arrangement).
Design assumes A325 bolts.
Chockfast decision to be made - one layer or two? Cost implications.

Analysis Overview

Load Cases Analyzed

FLS #1- Peak Power Production High Cycle Fatigue U = 2.25 m/s TSR = 2.00 FLS #2- Torque Limited Power Production High Cycle Fatigue

U = 3.5 m/s TSR = 3.00

FLS #2- Torque Limited Power Production With Deflection High Cycle Fatigue U = 3.5 m/s TSR = 3.00

> Freewheel Operation Survival U = 3.5 m/s TSR = 4.5

Analysis Overview Driveline Bending Moments D-TD20-10053

Analysis Overview

Bearing Surface Pressure Check

D-TD20-10058 PCD BEARING FORCE CALCULATION

Torque Limited End Bearings: 7.7x above failure pressure.

> Mid Bearings: 4.1x above failure pressure.

Freewheel

End Bearings: 3.1x above failure pressure.

Mid Bearings: 2.0x above failure pressure.

Diameter could be reduced.

Analysis Overview

Driveline Component Analysis

FEA Analysis

Bearing housings have been reviewed, pass initial screens for strength under freewheel operation.

Corrosion Protection

Corrosion protection strategy - PCD Bearings

PCD Bearing at highest risk for failure from corrosion.

Epoxy coating was effective at limiting zinc corrosion.

Further testing should be performed to confirm coating capabilities.

Corrosion Protection

Corrosion protection strategy - PCD Bearings

Remainder of system will utilize traditional epoxy coating system and supplemental cathodic protection.

TidGen[®] 2.0 CDR - Continuation Application

Electrical and Control System - Tasks 3 and 4

Condition Monitoring System

- Enclosure Temperature and Humidity (leaks and electronics)
- Mooring line tension
- Bearing temperatures
- Buoyancy pod leaks
- Device position
- Water velocity

Theory of Operation

- Onboard PLC serves as condition monitoring system (CMS) and control
- Shore station sends commands to device, but device is capable of autonomous operation
- PLC handles fault monitoring, automatic shutdowns based on CMS inputs

Power Curve

REV. DESCRIPTION DATE DRAW	и снк	APP
TBD TBD-	-TBD-	-TBD-

UNLESS OTHERWISE SPECIFIED:		NAME	DATE		-		254 COM	MERCIAL ST.
DIMENSIONS ARE IN MM TOLERANCES: ANGULAR: ±1°	DRAWN					DRPC	SUITE 119B PORTLAND, ME 04101	
	CHECKED				000	AN RENEWARLE	USA (207) 772	7707
	ENG APPR.		· · ·	POWERCOMPANY			(201)112-1101	
X ±0.5 X.X ±0.2 X.XX±0.1	PROPRIETARY AND CONFIDENTIAL		TITLE:					
MATERIAL FINISH	This arawing represents details and design frequents of elements of a design prepared by and for Ocean Renewable Power Company, LLC (ORFC). ORFC retains exclusive ownership of the drawing, details and designs and are not to be used by any pergon, unless prior withen consent is			SIZE DWG. NO.			REV	
DO NOT SCALE DRAWING	upon completion of said work.		SCALE: 1	1:100		SHEE	T1OF1	
				P	OW	ER COM	PAN	r

Subsystem Overview

Subsystem Components

- Generator (x2)
- Converter (x2)
- SIM PSU (x1)
- UPS Module (x2)
- UPS Battery (x2)
- Shore Cable Interconnect
 - DC Contactor (x4)

Subsystem Overview

Subsystem Components

Specifications & Requirements Power & Data Cable

Power Cable

- 2km Length
- Minimum 300kcmil
- Pair of armored single conductor

Control and Data

- 2km Length
- #6 AWG 240VAC
- 2 Pair single mode fiber optic

Transmission line is low cost, low flexibility cable (2km) Transmission to device cable is higher cost, high flexibility (120m)

Specifications & Requirements Power Cable

Conductor Size	Energy Loss	Revenue Loss
300 kcmil	8.6%	\$12,615
500 kcmil	5.1%	\$9,345
750 kcmil	3.4%	\$4,985

*Annualized losses at \$0.22/kwh

Subsystem Cost

Estimated fabrication cost

Sensors	\$67,932.31
Sensor Cabling	\$17,770.00
Equipment	\$14,121.08
Equipment Cabling	\$4,050.00
Data cable	\$609,000.00
Power Cable	\$611,906.50
TOTAL INSTRUMENT	\$103,873.39
TOTAL P&D	\$1,324,779.89

NOTE Does not include cost of installation

Validation Testing

- Bench testing of components
- Integration of electrical system before deployment
- Communications tests with full cable or cable length simulator
- With TidGen® 2.0 delay, utilize SCADA architecture on RivGen® 2.0
- Early bench and systems tests on smaller system
- Scale up and include improvements.

Thank you!

